
A Secure and Transparent
Firewall Web Proxy

Roger Crandell, James Clifford, and Alexander Kent – Los Alamos National Laboratory

ABSTRACT

The LANL transparent web proxy lets authorized external users originating from the Internet to
securely access internal intranet web content and applications normally blocked by a firewall.
Unauthenticated access is still, of course, denied. The proxy is transparent in that no changes to
browsers, user interaction, or intranet web servers are necessary. The proxy, a few thousand lines of C
running on Linux, has been operating within Los Alamos National Laboratory’s firewall since 1999.

Introduction

Our goal was to provide a transparent firewall
web proxy, a proxy allowing authorized and secure
access to the many firewall-protected intranet web
servers at Los Alamos National Laboratory (LANL).
Our offsite users required access to internal news,
phone directories, web email, the online library, and
administrative services. Additionally, they need to
download documentation and software. External users
often find themselves in the situation where they are
forced to use available computers at the sites they are
visiting. Non-standard access methods, including
browser configuration modification or installing vir-
tual private networking (VPN) software was often
impractical or undesirable. At the same time, it was
very important to maintain the security of our intranet
servers and their data. Only requests from authorized
users would be forwarded and all information sent
outside the firewall had to be encrypted. We wanted
the web proxy to function within the framework of the
existing firewall.

We considered several approaches.
• We could make exclusive use of virtual private

networking to access internal web servers.
• A proxy could be designed to work only for a

single web server, making the design easier.
• Selected web services could be relocated out-

side the firewall.
• Rules to allow direct access through the fire-

wall to internal web servers could be allowed.
These rules could be permanent or dynamic in
nature. Dynamic rules would be installed auto-
matically following authentication and removed
after a specific time period. Rules would be
based upon external IP address and internal
web server IP address.

• We could not allow external access to our inter-
nal web servers.

• A transparent web proxy could be provided.
We concluded a transparent web proxy would meet all
our requirements. The next question was how to
implement it in a secure fashion while still providing
simple and reliable operation.

This paper focuses on how these needs were
addressed through the design of an innovative and
user-friendly proxy using available technologies and
open source software.

Goals

Controlled access to intranet web servers from
the Internet was the goal. VPN access into the intranet
was available, but only provided access to users who
had the proper VPN client software installed. In addi-
tion, a VPN solution was seen as overkill for those
users requiring just web-based intranet access. Clearly,
there was an accessibility gap needing to be filled.
What was needed was an access mechanism that
worked with any browser, anywhere. We desired sim-
plified access while also ensuring client transparency,
encrypting all data transmitted over the Internet, pro-
viding user-based authentication, and requiring no
modifications to existing intranet web servers. The
authentication method must continue to work in the
same manner as the existing firewall. A web single
sign on was determined to be a requirement. Once an
individual authenticated to the web firewall proxy,
they would not need to authenticate again to internal
web servers. The authentication on the web proxy
would provide authentication credentials necessary to
access all internal servers.

Design

Meeting the transparency requirement was our
first task. Accomplishing this requires all inbound
intranet web requests to traverse a path allowing eval-
uation of the connection and forwarding as necessary.
This evaluation could be done with a broadcast net-
work firewall DMZ where all the incoming HTTP
requests would be visible. The proxy could then inter-
cept the requests from the broadcast medium. Another
option is to use a stateful Linux firewall [14] which
would also act as the proxy. However, we chose a
third option: using a router with policy routing [18].
The policy routing rules route packets based upon des-
tination port numbers and sends all HTTP (port 80)
and HTTPS (port 443) requests to the proxy server.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 23



A Secure and Transparent Firewall Web Proxy Crandell, Clifford, & Kent

The standalone proxy server makes use of the Linux
operating system with netfilter [14] and iptables rule
set. Through the insertion of iptables rules such as:
iptables -t nat -A PREROUTING \
-ieth0 -p tcp -d INTERNAL_NET \
-dport 80 -j REDIRECT -to-ports 80

iptables -t nat -A PREROUTING \
-ieth0 -p tcp -d INTERNAL_NET \
-dport 443 -j REDIRECT -to-ports 443

Firewall
web

proxy

Intranet
Web Server

https: Intranet (cookie)

https: Response

https: Request

User Agent
(Browser) on

Internet

https: Response, return code = 404
,

https: Response

https: Response, return code not 404,

Figure 1: An http request with valid authentication cookie, internal server content on port 80.

Firewall
web

proxy

Intranet
Web Server

https: Intranet (cookie)

https: Response, return code = 404

https: Request

User Agent
(Browser) on

Internet

https: Response, return code = 404
,

https: Response

https: Response, return code = 404,

Figure 2: An http request with valid authentication cookie, content unavailable on internal server.

the proxy server can accept connections for an entire net-
work and respond using the IP address of the intended
destination server. Several router vendors also provide
layer-4-based policy routing that provides similar trans-
parent redirection. This policy routing is commonly used
for outbound transparent HTTP proxying [4].

The second task was to force the use of SSL
encryption on all incoming HTTP connections. This is
accomplished by running a redirector daemon on the
proxy server. The redirector listens on port 80 and
redirects port 80 connection requests to port 443 on
the same requested server. To accommodate the fact
that the proxy masquerades as many web servers, a
wildcard X.509 [13] certificate is installed on the

proxy. The certificate has the form *.lanl.gov, Los
Alamos’ domain name. This simple redirection from
HTTP to HTTPS guarantees all data requests from our
external users are encrypted.

Once the port 80 to 443 redirect has been issued,
knowledge of the original port requested is lost. All
web requests arrive at the proxy on port 443, even the
ones that started out on port 80. The proxy must make
a decision about which intranet web server port it
should connect to following authentication. Keeping
state information about previous requests was deemed
to be problematic, and a simpler approach was needed.
It was decided to first attempt a port 443 connection to
the intranet server, and look at the HTTP return code
[7]. If the return code was 404, indicating the content
is not found, the proxy then attempts a connection to
port 80 on the intranet server. If the return code is
again 404, this is returned to the web browser. If the
return code is not 404, the proxy forwards the server’s
data to the web browser. Figures 1 and 2 indicate the
different possibilities described above. Obviously, the
proxy does not support intranet web servers running
on non-standard ports.

24 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Crandell, Clifford, & Kent A Secure and Transparent Firewall Web Proxy

Third, the proxy needs a web authentication sys-
tem to tell whether or not to forward the user’s HTTPS
requests. One method we have seen is to remember
authenticated users by source IP address. The draw-
back to this method is you allow access to an IP
address, not necessarily a specific user. Connections
from remote sites using network address translation
(NAT) [14], for example would allow multiple IP
addresses access because NAT changes all internal IP
address to a single external IP address. We needed to
authenticate individual users rather than IP addresses.

Intranet
Central
Authentication
Server

Web
Server

Firewall

DMZ

Outer

Public

Network

Firewall

Web
Firewall
Proxy

Firewall

Layer 4
Switching

Router

Web
Login
Server

Internet

User Agent
(Browser)

Figure 3: Web firewall architecture.

The authentication methods used by the web fire-
wall vendors we investigated [1, 2, 3, 4, 5] were
deemed unacceptable. Their methods were either
unacceptable from a security standpoint, or their
authentication scheme did not fit into our existing
authentication methods. Consideration was given to
the HTTP CONNECT [12] method, which tunnels
HTTPS and bypasses normal application layer func-
tionality. This method presents a set of security issues,
which we choose to avoid. Final design choices were
two-factor authentication, a transparent proxy, and a
secure authentication methodology. Implemented cor-
rectly, these would guarantee reliable access only to
authenticated users and not IP addresses.

This authentication service, at a minimum, must
provide the following capabilities. First, the proxy

must be able to tell if an HTTPS request comes from
an authenticated user session. Second, if the HTTPS
request does not include valid authentication creden-
tials, the proxy needs the URL of a web site that han-
dles an initial, interactive user login.

There are two popular methods for keeping track
of authenticated web sessions: one camp uses Kerberos
tickets [16], (RFC 2478) [10], and one uses cookies [6,
7, 8], RFC 2965 [9]. Since the authentication system
determines what is allowed through the proxy, careful
design [17] and implementation is crucial.

LANL had an existing cookie based central web
authentication service with the following security features:

• Two-factor CRYPTOCard [11] tokens with
one-time passwords are used instead of tradi-
tional reusable passwords.

• The cookie sent to the browser is not persistent.
• The cookie string is random and contains no

intrinsic value or information beyond being rea-
sonably unique and hard to guess.

• The browser is instructed to send the cookie
only to ‘‘*.lanl.gov’’ sites and only within an
SSL session.

• The cookie is bound to the browser’s IP
address.

• Every new HTTPS request causes the cookie to
be re-verified.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 25



A Secure and Transparent Firewall Web Proxy Crandell, Clifford, & Kent

• To address the risk posed by a user walking
away from a logged in session at an Internet
kiosk, cookies have a maximum server-side
lifetime after which the user must login anew.

• Cookies are also invalidated (server-side) if
they are not used (idle time out).

• The user can voluntarily log out.
These features lent themselves well to the authentication
needs of the proxy so this preexisting system was used.

User Agent
(Browser) on

Internet

Firewall
web

proxy

Web
Login

Server

Central
Authentication

Server

Redirect to https: Intranet

https: Intranet (no cookie)

Redirect https: Web login (w/referrer)

http: Intranet Request

Note: Dashed lines are the result of redirects

Redirect https: Intranet (set cookie)

https: Intranet (cookie)

Submit Login Form

Authenticate OK

Authenticate User

https: Web login (w/referrer)

Login Form

Figure 4: Initial HTTP request.

Implementation

Our actual proxy implementation is comprised of
several parts. See Figure 3, Web Firewall Architecture
for details.

The first part requires the use of policy based
routing to deliver HTTP/HTTPS messages to the
proxy server. The firewall Demilitarized Zone Net-
work (DMZ) [15] is contained within a commercial
router that provides layer-4 policy routing. Incoming
packets addressed to URLs behind the firewall are
policy routed to the proxy server using layer-4 rules.
All destination IP traffic addressed to any IP address
behind the firewall going to ports 80 or 443 is policy
routed to the web proxy.

The second part is the web proxy server plat-
form. We use the Linux operating system. Netfilter
and iptables are part of the operating system. Netfilter
runs within the kernel. Iptables provides the configu-
ration interface to netfilter [14]. As described earlier,
using iptables redirect, all packets policy routed to the
web proxy are redirected to the web proxy. The proxy

then masquerades as the internal web server when
responding to the external web client.

The third part is the web authentication system.
LANL’s web authentication system is single sign-on.
The session cookie obtained when the user authenti-
cates works with all participating intranet servers.
User authentication is two-factor authentication using
CRYPTOCards [11]. This type of authentication
makes use of one time passcodes. Following success-
ful authentication, the password generated from the
CRYPTOCard may not be used again. Our cookie
attributes are:
Name = "SessionID",
VALUE = "Authentication random number",
Domain =".lanl.gov", Path ="/",
Max age = 0,
Secure = "1".

All other attributes are default values. The Max age
attribute keeps the cookie from being stored on the
web browser and causes the destruction of the cookie
when the web client application is terminated. The
secure attribute keeps the cookie from being transmit-
ted in a non SSL request.

Cookies provide a security plus: the ability to
revoke the authentication cookie at any time. Figure 4,
Initial HTTP Request and Authentication, describes an
initial connection without a valid authentication cookie.
Figure 5, HTTP Request with Valid Authentication
Cookie, describes a normal connection request that has
a valid cookie. When an HTTPS request is forwarded
though the proxy, the cookie is passed along too.
Checking to see if a cookie is valid on the intranet

26 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Crandell, Clifford, & Kent A Secure and Transparent Firewall Web Proxy

servers can be tricky if the cookie is associated with the
browser ’s IP address. The intranet web server sees the
proxy as the user agent, but the cookie is associated
with the end user’s IP address. Our solution is to trust
any cookie with a non-intranet address originating from
the proxy. Integrating the proxy with other authentica-
tion systems may require a different approach.

Our web authentication system uses two Linux
servers: a login web server to provide the interface
allowing the entry of a CRYPTOCard-generated pass-
word, and a back-end authentication server to validate
the password.

The fourth and primary component of the system
is the web proxy daemons. They handle redirection of
HTTP to HTTPS requests and the actual connection
proxying. The proxy consists of approximately 2500
lines of C code. The first daemon, called REDIRD,
listening on port 80, redirects port 80 intranet requests
to port 443. The second daemon, WFD, handles the
port 443 connections. WFD handles header parsing to
collect the authentication cookie and response codes,
connections to intranet web servers, connections to the
central authentication server to verify cookies, and bi-
directional forwarding of allowed browser and intranet
web server traffic.

User Agent
(Browser) on

Internet

Firewall
web

proxy

Intranet
Web

Server

https: Response

https: Request

https: Intranet (cookie)

https: Response

Figure 5: HTTP request with valid authentication cookie.

Reliability
In general, issues that affect other Internet ser-

vice availability will apply to the proxy. The usual
hardware, operating system, server software, network-
ing and power concerns are relevant and are not dis-
cussed here. Attacks from the Internet, however, pre-
sent some different problems for the proxy.

The good news is the proxy does not need to be
directly addressable from the Internet. Policy routing
directs only port 80 and port 443 traffic destined for
intranet hosts to the proxy. The proxy itself cannot be
scanned or attacked in the usual ways.

The bad news is that the proxy must respond for
all intranet web servers. When someone scans your
intranet address space for ports 80 or 443, the packets
are routed to the proxy. The impact to a single host
from this type of scan is minimal. In the case of the

web proxy, scans are multiplied by the number of
intranet web server addresses which are policy routed
the proxy. Under the right conditions, a simple scan
turns into a denial of service attack on the web proxy.

For example, suppose the proxy is set up to
respond for and entire class B network to avoid the
administrative chore of tracking intranet web servers.
A network scan of the site’s intranet web servers will
send 64K requests to the proxy. This generates a bit of
extra work, but the proxy can keep up as long as the
requests are sequential and use 3-way TCP hand-
shakes. If the scan involves a burst of SYN packets
sent to 64K addresses, it turns into a SYN flood
attack. Connection queues for the proxy’s daemon fill
up so additional connection requests are dropped.

One solution is to throttle connection requests
from individual source IP addresses. Since the proxy
is responding for many destination addresses, the rule
to limit connections applies to any destination IP
address. A second alternative is to dynamically block
source IP addresses sending malicious packets.
Finally, to minimize the problem, one can limit the
number of addresses the proxy responds for to real
intranet servers that need to be accessed from the
Internet. This also improves security.

Performance

The proxy software makes light demands on the
hardware. The application does some network I/O,
some string manipulation, and SSL encryption. A
modestly configured PC should be able to keep up
with most site’s workloads. Our proxy runs on a 800
MHz Intel Pentium with 512 Mbytes of memory and
100 Mb/s Ethernet and enough disk storage for a mini-
mal Linux operating system and logging. With this
hardware and current workloads, there is no user
detectable difference in response in fetching web
pages through the proxy and from within the intranet.

The web proxy currently proxies for one class B
address range. There are approximately 1000 individual
users who access the web proxy. The proxy typically
handles 10,000 to 12,000 authenticated requests per day.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 27



A Secure and Transparent Firewall Web Proxy Crandell, Clifford, & Kent

The average number of simultaneous connections is 12
with peaks to 36. We have seen no performance issues
since installing the proxy. Port 80 and 443 scans of the
class B address space do on occasion cause a slowdown
in the proxy’s response to valid connections.

The best way to improve performance is the
same as improving availability: keep the Internet noise
away from the proxy. Also, a layer-4 switch or policy
router using proxy load balancing would allow for
multiple proxies, resulting in scalable performance
and improved availability for large applications.

Topology

The web proxy service consists of three pieces: a
web login server, an authentication server (e.g., a Ker-
beros key distribution center-KDC), and the proxy itself.
Where you place these components in your firewall
architecture involves some security trade offs. The
weblogin server, a real web server, is the only compo-
nent that needs to be addressed directly from the internet.

Our weblogin server is outside the firewall,
where it is subject to attack. If compromised, the
intruder can capture names and passwords of users on
the weblogin server and use them to get access
through the web proxy. Intruder access is limited to
firewall services and some users’ accounts.

Placing the weblogin server inside the firewall
with a special rule permitting access from the Internet
creates a bigger problem if the server is compromised.
The intruder is no longer limited to firewall services for
certain users; you have an intruder inside your intranet.
Our authentication server is inside the firewall, but is
not directly accessible from the Internet. With the
weblogin server outside the firewall and the authentica-
tion server inside, we have a special rule (hole) that
allows them to talk. Capturing the weblogin server
allows the intruder to attack the authentication server.

Issues

Forcing the use of SSL was recognized to pre-
sent issues to user agents that the end user must deal
with. Some user agents will complain about wildcard
certificates and the user must specifically accept the
certificate. We have observed some vendor proprietary
systems using HTTP protocols that have been coded
never to accept wildcard certificates. Another issue
arises when system administrators have image source
tags that are absolute, rather than relative. When the
image tag for example is http://www.foo-
bar.net.com/image, the image will not always display
properly. Because we have forced the user agent to use
SSL, it should comment that it is about to fetch an
insecure document, and give the user the option to
proceed or not. Instead, some agents will silently
ignore the image tag, resulting in an incomplete page
being displayed to the external web client.

Web servers that run both secure (HTTPS port
443) and insecure (HTTP port 80) on the same server

will cause problems. When the user connects to the
server on port 80, and the proxy has established the
session with HTTP keepalive active, and then the user
selects a link on the returned page sending them to the
HTTPS server on the same web server, the proxy will
continue to proxy the request to port 80. It will receive
an HTTP 404 response code and can recover from this
error for any request types except posts. In these cases
the proxy saves the original request and retransmits
the saved request to port 443. However, due to the for-
mat nature and potential large size of post requests, the
original post is not kept and the request will fail. It is
not conceivable to save and reissue the post requests.
In practice, however, this has not actually been a prob-
lem for us because our web server system administra-
tors do not operate their servers in this manner.

As written, the proxy only supports standard
HTTP ports 80 and 443. Other ports could be supported,
but would require additional code. One way to address
this would be to maintain a configuration file with a list
of servers and associated non-standard ports.

For those who are so inclined, one can use self-
signed certificates, as opposed to paying for certifi-
cates signed by recognized organizations. Doing so
will generate a warning message on the browser,
requiring the user to purposely accept the self-signed
certificate.

Revocable authentication credentials is a valu-
able security tool. We limit the authentication creden-
tial lifetime. When the cookie expires, whoever is sit-
ting at the browser has to login again. Inactive ses-
sions are closed. If the proxy does not hear from the
browser within the idle time out interval, the user must
login again. Finally, the mindful user can explicitly
logout or simply exit the browser; both remove the
authentication cookie from the web client.

Even with all the built in security protections, it
is still possible a session could be compromised. Good
logs are critical for detection and recovery. The proxy
logs all successful transactions with the source and
destination IP addresses, the user’s ID, and the HTTP
request. The logs can be fed to a real time anomaly
detection system and reviewed manually. Previous
login successes, failures and logouts can be displayed
after a successful weblogin so the user can report
unexplained activity.

Security Analysis

Given the trusted nature of the web proxy, poten-
tial security risks are of particular concern. Below is
an attempt to identify and show mitigation efforts for
such concerns.

First, we must deal with network-based risks.
Given that the web proxy is an inbound firewall ser-
vice proxy, the following three network-based risks
are salient [15]:

28 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Crandell, Clifford, & Kent A Secure and Transparent Firewall Web Proxy

• Session hijacking
• Packet sniffing
• False authentication

Session hijacking is best mitigated by the use of
SSL/TLS connections for all data movement beyond
the initial referral from port 80. Since the proxy pre-
sents a properly (VeriSign) signed wildcard certificate,
users can be relatively assured that a man-in-the-mid-
dle situation is not ongoing. As indicated in the SANS
SSL Man-in-the-Middle Attacks paper [19], using
older Internet Explorer browsers can make it easier to
accomplish man-in-the-middle attacks.

Packet sniffing is also well protected against by
the encryption provided by the SSL/TLS connections.
Usernames, passwords, and subsequent authentication
cookies are all contained within the encrypted channel.
The proxy does continue to support shorter key lengths
for older international browsers, mostly from a capabil-
ity need. Currently, we feel the capability need out-
weighs of the risks of the reduced encryption quality,
though such decision may be reversed in the near future.

Finally, false authentication risks are well miti-
gated by several aspects of the system. The use of the
short-lived authentication cookies, the relationship of
the cookie to originating IP address, and the random
content of the cookie mitigate the risk of stolen or
forged authentication cookies. The use of two-factor
generated one-time passwords significantly lowers the
risk of stolen passwords.

The transparent nature of the proxy may give
some level of protection through its obscurity and dif-
ficulty in understanding the proxy’s relationship to the
web servers it sits in front. While the obscurity benefit
may be minimal, it can definitely make scan probes of
the internal network look unusual. One negative con-
cern related to this transparent aspect is potential
denial of service to the proxy, both intentional and
unintentional. Since the server answers for a wide
range of addresses (class B in our case) on port 80 and
443, there is significant potential for overwhelming
the server. Experience has shown this can be mitigated
through the use of SYN cookies [20] and keeping the
port 80 redirector lean and simple since it receives the
majority of denial attacks. Active methods of intrusion
detection and automatic host blocking have also miti-
gated the impact of scans.

A second concern is logic and programming
errors. These are the standard inherent low-level sys-
tem risks relevant to any security-centric application.
These risks include logic errors (e.g., unintended
granting of authentication cookies) and programming
errors (e.g., buffer overruns). The resulting unautho-
rized access could be either unintended access to the
protected websites or administrative access to proxy
itself. Obviously such risk must be addressed.

A multi-tiered mitigation approach to such errors
has been taken. First, the proxy has undergone both peer

design and code reviews to help remove both logic and
programming errors. Formalized system configuration
(we use a combination cfengine/cvs approach) including
a minimized system install, helps to ensure a potential
compromise has few other applications to leverage.
Helping to ensure least privileged access for the proxy
to the internal network, the router ACLs only allow the
proxy to have TCP ports 80 and 443 access, again miti-
gating exposure should the proxy application or server
be compromised. Minimizing vulnerabilities on internal
web servers also reduces the risks of a compromised
proxy. This mitigation is done with regular vulnerability
scans of the internal network web servers. One should
check the code using tools like Flawfinder and Rough
Auditing Tool for Security (RATS). These tools will
possibly identify security problems with the code. The
proxy also performs off host system logging. To date,
there have been no known compromises of the web
proxy system.

The last aspect of security concern involves end-
user behavior. User behavior can make or break any
good security stance. A major security concern with
the web proxy is user error. The proxy allows authen-
ticated users access intranet services. The service is
designed for users coming from public systems they
do not control like kiosks, cyber cafes, or conference
terminal rooms. Many users do not understand web
cookie management or are forgetful. Walking away
from a ‘‘logged in’’ browser is a real possibility and
concern. The ability to revoke credentials is an impor-
tant feature, as is their max age attribute of zero.

Conclusion

Users have received the proxy positively; with
the LANL proxy handling over 10,000 authenticated
HTTPS requests per day. The fact that the proxy is
transparent, not requiring any browser preferences to
be set, is particularly beneficial. This feature allows
users to access LANL intranet web sites from any-
where they have access to a web browser. In addition,
the per-user authentication has worked well. We have
encountered no technical problems with the use of
authentication cookies and no security issues with this
mechanism have been detected. The proxy’s simplicity
and non-intrusive nature into the end data exchange
has allowed it to work effectively with Java,
Javascript, and all other web-based application exten-
sions currently used and foreseeable. Overall, the
proxy provides a highly flexible yet secure mechanism
for Internet users to access intranet web content.

Author Information

James (Jim) Clifford is the Network Service
Team Leader and a Systems Software Engineer for the
Network Engineering Group at Los Alamos National
Laboratory. His interests include Internet technology,
Linux, and practical computer security. Jim has a BS
from the University of Michigan. He may be reached

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 29



A Secure and Transparent Firewall Web Proxy Crandell, Clifford, & Kent

via snail mail: MS B255,
Los Alamos National Laboratory, Los Alamos, NM
87545.

Alexander (Alex) Kent is the Deputy Group
Leader for the Network Engineering Group at Los
Alamos National Laboratory. His primary develop-
ment projects include Laboratory-wide authentication
and user account systems, network information propa-
gation and architecture, and the Los Alamos firewall
system. Alex has an BS and MS in CS from New
Mexico Tech and an MBA from the University of
New Mexico. 

Roger Crandell is a Staff Member in the Network
Engineering Group at Los Alamos National Labora-
tory. His primary role is firewall development and
software engineering. Roger holds a BSEE from the
University of Nebraska. 

References

[1] Checkpoint FireWall-1, http://www.checkpoint.
com .

[2] Cisco PIX firewall series, http://www.cisco.
com .

[3] Secure Computing Sidewinder G2, http//www.
securecomputing.com .

[4] Squid Web Proxy Cache, http://www.squid-
cache. org .

[5] Netscreen 5000 series, http://www.netscreen.
com .

[6] Web Initial Sign-on (WebISO), http://www.
middleware.internet2.edu/webiso .

[7] Thomas, Stephen, HTTP Essentials, 2001.
[8] Krishnamurthy, Balachander and Jennifer Rex-

ford, Web Protocols and Practice, 2001.
[9] Kristol, David and Lou Montulli, ‘‘HTTP State

Management Mechanisms,’’ RFC 2965, IETF,
October, 2000.

[10] Baize, E. and D. Pinkas, ‘‘The Simple and Pro-
tected GSS-API Negotiation Mechanism,’’ RFC
2478, December, 1998.

[11] CRYPTOCard Corporation, Kanata, Ontario,
Canada, http://www.CRYPTOCard.com .

[12] ‘‘Expired IETF Internet-Draft,’’ Art Luotonen,
1998.

[13] ‘‘ITU-T Recommendation X.509(03/00): Infor-
mation Technology-Open Systems Interconnec-
tion – The Directory: Public-key and attribute
certificate frameworks.’’

[14] Ziegler, Robert L., Linux Firewalls, 2001.
[15] Chapman, Brent D., and Elizabeth D. Zwicky,

Building Internet Firewalls, 1995.
[16] http://www.globecom.net/ietf/draft/draft-brezak-

spnego-http-03.html .
[17] http://www.pdos.lcs.mit.edu/papers/webauth%3Asec10.

pdf .

[18] Marsh, Matthew G., Policy Routing, http://www.
policyrouting.org/PolicyRoutingBook/ONLINE/
TO C . h t m l .

[19] http://www.sans.org/rr/papers/60/480.pdf .
[20] Lemon, Jonathan, ‘‘Resisting SYN flood DoS

attacks with a SYN cache,’’ Usenix BSDCon,
2002.

30 2003 LISA XVII – October 26-31, 2003 – San Diego, CA


